… Asked the brain about itself. Typical narcissistic brain behavior, don’t see the other organs doing it.
My bowels have been questioning a lot lately, so it’s not entirely without precedent.
Yea, what about your liver? Have you asked how it feels today?
Basically, yes. Our eyes capture the light that goes into them at 24 frames per second (please correct me if I goofed on that) and the image is upside down.
Our brains turn those images upright, and it also fills in the blanks. The brain basically guesses what’s going on between the frames. It’s highly adapt at pattern recognition and estimation.
My favorite example of this is our nose. Look at you nose. You can look down and see it a little, and you can close one eye and see more of it. It’s right there in the bottom center of our view, but you don’t see it at all everyday.
That’s because it’s always there, and your brain filters it out. The pattern of our nose being there doesn’t change, so your brain just ignores it unless you want to intentionally see it. You can extrapolate that to everything else. Most things the brain expects to see, and does see through our eyes, is kind of ignored. It’s there, but it’s not as important as say, anything that’s moving.
Also, and this is fun to think about, we don’t even see everything. The color spectrum is far wider than what our eyes can recognize. There are animals, sea life and insects that can see much much more than we can.
But to answer more directly, you are right, the brain does crazy heavy lifting for all of our senses, not just sight. Our reality is confined to what our bodies can decifer from the world through our five senses.
We definitely are seeing things faster than 24 Hz, or we wouldn’t be able to tell a difference in refresh rates above that.
Edit: I don’t think we have a digital, on-off refresh rate of our vision, so fps doesn’t exactly apply. Our brain does turn the ongoing stream of sensory data from our eyes into our vision “video”, but compared to digital screen refresh rates, we can definitely tell a difference between 24 and say 60 fps.
People looking at a strobing light, start to see it as just “on” (not blinking anymore) at almost exactly 60Hz.
In double blind tests, pro gamers can’t reliably tell 90fps from 120.
There is however, an unconscious improvement to reaction time, all the way up to 240fps. Maybe faster.The real benefit of super high refresh rates is the decrease in latency for input. At lower rates the lag between input and the next frame is extremely apparent, above about ~144hz it’s much less noticable.
The other side effect of running at high fps is that when heavy processing occurs and there are frame time lags they’re much less noticable because the minimum fps is still very high. I usually tell people not to pay attention to the maximum fps rather look at the average and min.
It seems to be more complicated than that
However, when the modulated light source contains a spatial high frequency edge, all viewers saw flicker artifacts over 200 Hz and several viewers reported visibility of flicker artifacts at over 800 Hz. For the median viewer, flicker artifacts disappear only over 500 Hz, many times the commonly reported flicker fusion rate.
Yeah it’s not like frames from a projector. It’s a stream. But the brain skips parts that haven’t changed.
I think i read that fighter pilots need to be able to identify a plane in one frame at 300 fps, and that the theoretical limit of the eye is 1000+ fps.
Though, whether the brain can manage to process the data at 1000+ fps is questionable.
I’m using part of this comment to inform my monitor purchases for the rest of my life.
New 1,200 Hz displays? Well, it did say 1,000-plus…
You’re right that is a continuous process, so there’s no frame rate as such. 24 fps is just the lowest framerate that doesn’t look “framey” in videos, but can go as low as 12 and still reliably perceive it as movement, which is why most stop motion films are done at 12fps.
The amount of motion blur we see on fast moving objects is similar to a 24fps camera with a normal shutter angle setting, but we don’t perceive any blur when we turn our heads or move our eyes like a camera at that fps does.
There’s also our reaction time, which can vary a lot depending on a plethora of factors, but averages around 250ms, which is similar to 4fps 😅… Or maybe since it’s a continuous process it’s more like ♾️fps but with a 250ms delay 🤔😅
Generally humans don’t perceive a difference above 60 Hz.
Completely untrue and not even up for debate. You’d know this if you had ever used a high-refresh rate display.
Let me guess, you’ve also bought a Gamer Chair to go with your overpriced 144 Hz display.
So, have you actually used a 144 Hz display yourself?
Yes, I have observed a complete lack of improvement.
It’s noticeable, it’s just not massive. My phone screen runs at 120hz but I don’t notice a difference unless I’m scrolling rapidly. Gaming culture (driven by corporations) really overemphasizes its importance. Gamers as a group seem to be easily duped by impressive sounding numbers, just like the rest of the population.
Also keep in mind there likely isn’t a lot of selective pressure on biological vision refresh rate, so I wouldn’t be surprised if there’s a fair amount of variability in the ability to discern a difference amongst individuals.
Finally, a reasonable reply to my comment.
It’s a hot button topic for some people. I’m for the biological variation explanation - some people seem to really notice a difference while others don’t.
I think what the people who get really upset notice is that they dropped a few extra $100s on what’s often largely a marketing gimmick.
the 24 fps thing is one hella myth. our cones and rods send a continuous stream of information, which is blended with past-received information in our perception to remove stuff like the movement from darting your eyes around.
24fps vision is a lie told by Hollywood so they can save on film
It’s the lowest fps they can go without it being horrid, really.
It is horrid. I get nauseous whenever a low framerate video has any significant motion
Also, your eyes dart around and you only see a little patch. You blink. Your brain makes up a nice stable image of the world, mostly consisting of things that your brain think should be there.
If you want a fun experiment of all the things we see but don’t actually process, I recommend the game series I’m On Observation Duty. You flip through a series of security cameras and identify when something changed. It’s incredible when you realize the entire floor of a room changed or a giant thing went missing, and you just tuned it out because your brain never felt a need to take in that detail.
It’s sorta horror genre and I hate pretty much every other horror thing, but I love those games because they make me think about how I think.
Ha, I’ve heard of that one so I caught it. I missed 3 of the passes, though!
The 24fps thing aounds wrong. That’s not even a cinematic 30.
I don’t think it’s the brain but rather our consciousness that is limited. Our sensory inputs are always on and processed by the brain, but our consciousness is very picky and also slow.
People can sometimes recall true memories that they weren’t aware of, or react to things they didn’t think of and such.
Consciousness is also somehow lagging behind the actual decision making, but always presents itself as the cause of action.
Sort of like Windows telling you that you removed a USB stick 2 seconds after you did it and was well aware of it happening. Consciousness is like that, except it takes responsibility for it too…
When it encounters something that it didn’t predict, it’ll tell you that “yeah this happened and this is why you did that”. Quite often the explanation for doing something is made up after it happened.
This is a good thing mostly, because it allows you to react faster than having to consider your options consciousnessly. You do not need to or have time to make a conscious decision to dodge a dodgeball, but you’ll still think you did.
NAILED IT! Yeah, our subconscious is driving and only sends an executive summary up top. And we think, “I did this!” Nah. You didn’t. You are just along for the ride.
People hate this notion because it negates free will. Well, yeah, it kinda does.
Everybody reading these comments and considering the implications needs to go read Blindsight by Peter Watts. It’s a first contact story set in the near-ish future, and really goes into consciousness and intelligence. Very thought provoking if you thought this comment chain was interesting.
You can train your subconscious! Well, at least influence it’s decisions. Videogames are a great example. Trained reaction/response. Repeated response to similar stimulus can create a trained subconscious response.
However, I have difficulty, especially now that I’m older, where subconscious and conscious will compete and I will lose acuity of what I actually did.
That and my memory is getting worse. :/
Your brain is constantly processing the inputs from all of your senses and pretty much ignoring them if they fit with what it is already expecting.
Your brain is lazy. If everything seems to fit with what your brain expects then you believe that what you are seing is reality and you generally ignore it.
Generally the mind only focuses on what it believes is salient/interesting/unexpected.
Imagine if we had image sensors that could filter like that. Boom, video 100 times smaller in size. “Autonomous” surveillance cameras running on fractions of the power. Etc. Etc. Just far more efficient.
We do have those things. That’s how many technologies already work.
Yes. We get hints of this now and then when digital TV breaks up and only the moving parts are updating until the next key frame arrives.
That’s actually how a lot of video codecs work, they just throw a key frame in every so often that has the full image so you can just do diffs for the rest of the frames till the next key frame.
I heard a similar thing. But a bit more complicated. It wouldn’t be just the eyes, but all senses used by the brain to edit a filtered vision of reality.
And while the eyes take in everything they’re capable of, the brain only focuses on what it considers important. Which is probably false due to the many, many times one will search for something within their cone of vision, yet are unable to see it.
So while I’m not sure of the details, the brain can be thought of as choosy with what it shows.
I find myself often wondering what colors look like to other people because there is no way to know for sure that what I see as red looks the same to everyone else. It’s just a frequency of light. How the brain interprets that is anybody’s guess. I can’t describe the difference of red vs blue and I’ve never met anyone else who could either. Maybe what I see as red is actually what I see as blue to someone else.
Apart from the philosophical aspect which is unanswerable, I feel certain we see equivalent colors. This is an interesting article about it. https://en.wikipedia.org/wiki/CIE_1931_color_space Scientists found what the three primary colors our eyes see are. Because of the overlap in cone activation they’re actually imaginary colors that don’t exist.
What the eyes do when receiving information isn’t the focus, it’s how those signals they send to the brain are interpreted is where the uncertainty comes from. Everyone will have the same data. How the brain renders it in our mind may not be.
I’ve had this thought many times, glad I’m not alone. Also makes you wonder if possibly everyone’s “favorite” color is the same color, we just all call it different things because of how we individually perceive it.
This is a fun thought, but I can disprove this myself easily enough due to having had my favorite color change multiple times in my lifetime. Currently enjoying green.
How do our brains process reality? Like this.
This one got me.
One thing I find very interesting about how brains process reality is that there’s a disease that makes your eyes have blind spots. However people with that disease don’t see those blind spots because the brain fills the gaps with the information it knows to be there. So you could see a door closed just as it was when you last looked at it directly, but in the meantime someone opened the door and you’re still seeing the door closed until you look at it directly.
There’s a rare disease that turns peoples faces into demon faces called prosopometamorphopsia that can be partially relieved by observing things under different colored light.
We all have blind spots because there’s a hole in the retina in the back of the eye for the optical nerve. The spots are located on the outer top side of our field of view and you can become aware of them with some visual tests online.
It sounds like Op is describing motion blindness.
I do not know how those people function.
The top commenter is correct. It’s why when you glance at a clock with a second hand, it can seem like it takes too long for it to move for the next second. It moved as you moved your eyes, and your brain didn’t make up the movement.
You can stop time by looking at a clock hand briefly. It’s your brain filling in blanks.
https://www.popsci.com/science/why-do-clock-hands-seem-to-slow-down/
Here’s an interesting related factoid - your eyes are constantly making tiny micromovements called saccades. During these movements, you don’t receive any visual information. Your actual view of the world comes in stuttering fits and starts. You don’t notice this because your brain literally invents what you think you’re seeing during saccades. It’s good enough not to get you weeded out of the gene pool.
Yey your brain makes up an approximation of reality at best. It’s the weirdest fucking thing.
I mean all animals have brains to render reality, aka visual, audio, predator awareness. It’s not so special, most animals have tiny little brains.
Some animals, such as certain deep water crustaceans (Matis Shrimp) and cephalopods (Cuttlefish) can see more colors than most mammals, and their brains are often smaller.
The theory you’re referring to sounds like the free energy principle (or a variation of it).
And in the end “reality” is just excitations in quantum fields. And you “perceive” mostly electromagnetic forces.